Great Lakes Bioenergy Center

- Led by the University of Wisconsin-Madison with Michigan State University as the major partner.
- The mission of the GLBRC is to perform the basic research that generates technology to convert cellulosic biomass to ethanol and other advanced biofuels.
Great Lakes Bioenergy Center

Led by the University of Wisconsin-Madison with Michigan State University as the major partner.

The mission of the GLBRC is to perform the basic research that generates technology to convert cellulosic biomass to ethanol and other advanced biofuels.
MSU GLBRC Metrics

Since 2007

- Patents and patent applications
 - 21 patents
 - 32 patents pending

- Licenses and Options
 - 16 licenses
 - 6 options
Great Lakes Bioenergy Center
Sustainability Research

Make the fundamental discoveries needed to design sustainable biofuel systems and provide a capacity to model alternative biofuel systems

❑ Economic – farmer, refiner, policy
❑ Social – energy and food security
❑ Environmental – climate, conservation, and biodiversity
Understanding Sustainability Research

What are the environmental implications of widespread biofuel feedstock cultivation?

Of greatest concern:

- Is there a net climate benefit when all GHG are considered?
- How much carbon debt is created on conversion to biofuel crops?
- To what degree will conservation and biodiversity suffer?
- What are the water and reactive nitrogen costs?
- Is there a way to avoid food vs. fuel competition?

Global warming impact (GWI) of alternative cellulosic cropping systems (20 years post-establishment) shows substantial climate benefit.
Biomass Supply Chain Modeling

Farmgate price: $40/dry ton
Weighted ethanol selling price: $2.18/gal
Total Ethanol Produced: 4.5 billion gal/yr

Farmgate price: $80/dry ton
Weighted ethanol selling price: $2.46/gal
Total Ethanol Produced: 42 billion gal/yr

All biomass is local: “average” values do not provide much useful information
Biomass Regional Spatial Modeling – Marginal Lands Potentials

Regional yield gap analysis
- Follow-on from earlier analysis of regional marginal lands
- Simulated yields and soil carbon gain for marginal lands at 0.5 ha resolution at multiple N rates to find optimal fertilizer need

Two questions:
- What are the consequences of additional fertilizer nitrogen on reactive nitrogen loss to the environment?
- Can carbon sequestration offset the GHG cost of additional reactive N?
Great Lakes Bioenergy Center
Plants Research

Develop sustainable, productive energy crops that can easily be processed into fuels and bioproducts.

- Increase biomass fuel value
- Improve sustainability
- Reduce recalcitrance
Increase Biomass Fuel Value

- Manipulate levels and composition of hemicellulose in the cell wall
 - Hexose-rich hemicelluloses
 - Promote production of mixed-linkage glucan (MLG) in parenchyma tissues of model grasses (Brachypodium, corn, and sorghum)
Increase Biomass Fuel Value

- Alter/enhance/produce oils in vegetative tissues
- Novel acyltransferase that synthesizes low viscosity oils – acetyl-triacylglycerols (AcTAGs)
 - Lower melting points and viscosity
 - Drop-in fuel
- Lipid droplets as an engineering platform for alternate fuels and coproducts
 - Terpenoids
 - Biopesticides, allelochemicals, and herbicides
 - Flavor, fragrance, and neutraceuticals
 - Industrial feedstocks
Improve Productivity and Sustainability

- Increase productivity of native grasses by delaying flowering time
 - Identify flowering time genes to inform work on biofuel crops
 - Switchgrass breeding

Switchgrass selection for winter-hardy lowland ecotypes that flower later.
Reduce Recalcitrance

- Alter lignin
- "Zip-lignin" technology introduces more easily-cleaved ester bonds into the lignin backbone
- FMT gene doubles the sugar yield from poplar biomass
Xylem-specific promoters
- Increased cellulose biosynthesis
- Increased gluco-mannan content
 - Lower processing requirements
- Increased starch in plant leaves at harvest
- Increased methylesterification of homogalacturonan in the plant cell wall
 - Improved digestibility
 - Larger plants
Great Lakes Bioenergy Center
Deconstruction Research

Develop chemical and enzymatic methods to release monomers and short oligomers from lignocellulosic biomass

- Pretreatments to open the matrix of plant cell wall polymers
- Lignin streams
- High-resolution imaging of cell walls
Two Ammonia-based Pretreatments

- Work well with grasses
- Ammonia Fiber Expansion (AFEX)
 - Can easily pelletize biomass
- Extractive Ammonia (EA):
 - Generates separate lignin stream
Copper-Catalyzed Alkaline Hydrogen Peroxide (Cu-AHP)
- Adding Cu to AHP improves performance
- Works very well with woody biomass
- High glucose yields and separate lignin stream
- Lignin is largely unmodified

Biomass: Hybrid Poplar
24 h pretreatment (30°C, 1 atm)
72 h enzymatic hydrolysis

Glucose yields (%)
Lignin Valorization

- Targets for lignin extraction:
 - High yield
 - Minimal chemical modifications
 - Compatibility with downstream processes
- Deconstruct extracted lignin into smaller aromatic fragments

Diagram: Potential market value (£/ton) vs. Production / market volume (kton/year)

Figure courtesy Richard Gosselink
Cell Wall Imaging

- *In situ* imaging at nanoscale resolution and real-time changes during biomass deconstruction processes
- Currently using to correlate digestibility of zip-lignin poplar lines to changes in cell wall ultrastructure
- Unique technology

Wild type	Line 5
Lignin (1600 cm⁻¹) | Lignin (1600 cm⁻¹)
GFP-CBM3 Antibody binding | GFP-CBM3 Antibody binding

A | D | G | J
B | E | H | K
C | F | I | L

Untreated | Alkaline treatment | Cu-AHP treatment

Confocal and fluorescence microscopy of Cu-AHP treated zip-lignin WT and Line 5.

www.glbrc.org
Early Deconstruction Area Technologies

- Mixture to induce cellulolytic enzymes for deconstruction of lignocellulosic biomass
 - Reduces cost
 - Can be produced in-house
- Alpha-xylosidase enzyme
 - Increase yield of fermentable sugars
Future Directions

- Comprehensive Integration of the Field-to-Product Pipeline
 - Modeling of field-to-product pipelines
 - Mitigate the impact of feedstock variability on deconstruction and conversion
 - Improve methods for creating lignin-derived bioproducts
 - Optimize production of terpeniod biofuels and bioproducts

Field-to-Product Integration
Future Directions

Sustainable Production of Bioenergy Crops with Desirable Traits

- Increase yield and quality of bioenergy crop biomass
- Improve switchgrass productivity
- Maximize bioenergy crop performance on marginal lands
Future Directions

Efficient Conversion of Biomass into Specialty Biofuels and Bioproducts

- Develop deconstruction and separation techniques that optimize C yield
- Reprogram microbial C flux to specialty biofuels
- Synthesize bioproducts from conversion residue
Contacts

Jeff Myers
Associate Director, MSU Business Connect
517-884-2366
jkmyers@msu.edu

www.glbrc.org

http://www.technologies.msu.edu/industry/glbrc-msu